Ensemble Kalman filtering for non-linear likelihood models using kernel-shrinkage regression techniques

نویسندگان

  • Jon Sætrom
  • Henning Omre
چکیده

One of the major limitations of the classical ensemble Kalman filter (EnKF) is the assumption of a linear relationship between the state vector and the observed data. Thus, the classical EnKF algorithm can suffer from poor performance when considering highly non-linear and non-Gaussian likelihood models. In this paper, we have formulated the EnKF based on kernel-shrinkage regression techniques. This approach makes it possible to handle highly non-linear likelihood models efficiently. Moreover, a solution to the preimage problem, essential in previously suggested EnKF schemes based on kernel methods, is not required. Testing the suggested procedure on a simple, illustrative problem with a non-linear likelihood model, we were able to obtain good results when the classical EnKF failed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Local Least Squares Framework for Ensemble Filtering

Many methods using ensemble integrations of prediction models as integral parts of data assimilation have appeared in the atmospheric and oceanic literature. In general, these methods have been derived from the Kalman filter and have been known as ensemble Kalman filters. A more general class of methods including these ensemble Kalman filter methods is derived starting from the nonlinear filter...

متن کامل

Ensemble Kalman Filtering with Shrinkage Regression Techniques

The classical Ensemble Kalman Filter (EnKF) is known to underestimate the prediction uncertainty resulting from model overfitting and estimation error. This can potentially lead to low forecast precision and an ensemble collapsing into a single realisation. In this paper we present alternative EnKF updating schemes based on shrinkage methods known from multivariate linear regression. These meth...

متن کامل

TO APPEAR IN SPECIAL ISSUE: ADVANCES IN KERNEL-BASED LEARNING FOR SIGNAL PROCESSING IN THE IEEE SIGNAL PROCESSING MAGAZINE 1 Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing

Gaussian process based machine learning is a powerful Bayesian paradigm for non-parametric non-linear regression and classification. In this paper, we discuss connections of Gaussian process regression with Kalman filtering, and present methods for converting spatio-temporal Gaussian process regression problems into infinite-dimensional state space models. This formulation allows for use of com...

متن کامل

Ensemble Filtering for High Dimensional Non-linear State Space Models

We consider non-linear state space models in high-dimensional situations, where the two common tools for state space models both have difficulties. The Kalman filter variants are seriously biased due to non-Gaussianity and the particle filter suffers from the “curse of dimensionality”. Inspired by a regression perspective on the Kalman filter, a novel approach is developed by combining the Kalm...

متن کامل

Non-differentiable Minimization in the Context of the Maximum Likelihood Ensemble Filter (mlef)

The Maximum Likelihood Ensemble Filter (MLEF) is a control theory based ensemble data assimilation algorithm. The MLEF is presented and its basic equations discussed. Its relation to Kalman filtering is examined, indicating that the MLEF can be viewed as a nonlinear extension of the Kalman filter in the sense that it reduces to the standard Kalman filter for linear operators and Gaussian Probab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011